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ABSTRACT. The objective of the research is to develop a global land use / land cover map 
(LULC) of the Apurímac Region, from ESA Sentinel-2 images with a resolution of 10 m. 
to predict 10 soil type classes throughout the year in order to generate a representative 
snapshot of 2020. The methodology used in the analysis is the machine learning model, for 
the classification it was based on Artificial Intelligence (AI). For the processing, 6 bands of 
Sentinel-2 surface reflectance data were used: visible blue, green, red, near-infrared and two 
short-wave infrared bands, to create the final map, the model is run on multiple dates of 
images throughout the year on the Google Earth Engine (GEE) platform. The results of the 
study determine the total area is 2 111 415.29 ha, where the water represents 9 392.84 ha. 
(0.44%), on the other hand, snow/ice occupies 227.89 ha, representing 0.01%, while 
cultivated land occupies an area of 34 408.09 ha, (1.63%), bushes/shrubs occupy most of 1 
740 486.69 ha, which represents 82.435% of the total area. 
 
Keywords (4-6): Machine learning, Land cover, Google Earth Engine (GEE), Artificial 
Intelligence (AI)  
 
1. INTRODUCTION 
Information on land cover at a global level, as used by the scientific community, 

governments and international organizations among others, is essential to know 
environmental changes, food security, conservation, and the coordination of actions 
necessary to mitigate and adapt to global change. [1]–[3]. These data also play an 
important role in improving the performance of ecosystem, hydrology and 
atmosphere models [4]. This accurate and reliable information on land cover at a 
global level is necessary, therefore, it is urgently needed [5]. 
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Soil is the basis of human livelihood and well-being, it is the main provider of 
food, water and many services among others, including biodiversity and the 
ecosystem, anthropogenic activities have caused extensive changes in land cover [6]. 
Changes in land cover are a determining factor and a consequence of global 
environmental change, and they have generated a great impact on our society and 
the ecosystem at the national and global level [7], [8]. The "Earth" is defined as a 
place where human activities take place, composed of water, soil, forests and 
farmland, described as Ground cover (LC) [9], while the use of the soil (LU) 
indicates how humans use the land [7]. Changes in LU and LC over a period of time 
are collectively known as land use land cover change (LULCC). Land, water and the 
environment have apparently been affected due to rapid growth in human population 
and technological advances [10]–[12]. Accurate information about LU, LC, and their 
changes are of great importance for decision makers and scientists to effectively plan 
and manage in sustainable development [6], [13]. 

In this study, we analyze and quantify land cover use with algorithms powered 
by artificial intelligence. The analysis is from global land use / land cover map 
(LULC) samples. Produced by a deep learning model trained with more than 5 
billion Sentinel-2 pixels, they compose in a final representative map of 2020, with a 
detail of 10 land cover classes as follows: 

1.- Water. Areas where water was predominantly present throughout the year; 
cannot cover areas with sporadic or ephemeral water; contains little or no sparse 
vegetation, no rocky outcrop or elements built like piers; Examples: rivers, ponds, 
lakes, oceans, flooded salt plains. 

2.- Trees. Any significant grouping of tall dense vegetation (15 m or more), 
typically with a closed or dense canopy; examples: wooded vegetation, groups of tall 
and dense vegetation within savannas, plantations, swamps or mangroves. 

3.- Grass. Open areas covered with homogeneous grasses with little or no taller 
vegetation; cereals and wild grasses without an obvious human layout (ie, without a 
mapped field); Examples: meadows and natural fields with little or no tree cover, 
open savanna with few or no trees, parks / golf courses / lawns, pastures. 

4.- Flooded vegetation. Areas of any type of vegetation with evident intermixing of water 
during most of the year; seasonally flooded area that is a mixture of grass / shrubs / trees. 

5.- Crops Cereals, grasses and crops planted in plots by humans that are not at the 
height of the trees; Examples: corn, wheat, soybeans, fallow patches of structured land.  
 

2. MATERIALS AND METHODS 
2.1. Study area 
The study area corresponds to the Apurímac region (Fig. 1), its surface area is 

approximately 2 111 415.20 ha. Natural vegetation comprises a diversity of 
categories, ranging from high Andean grasslands, natural and planted forests, to a 
series of scrub associations. However, the dominance of grasslands and bushes (45% 
of the extension) is notorious, they are mainly found in the high areas to the south of 
the department, in the provinces of Aymaraes, Antabamba, Grau and Cotabambas. 
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Fig. 1. Geographical location of the Apurímac Region. 

 
2.2. Theoretical Framework 
2.2.1. Impact Observatory 
It is a mission-driven technology company that provides artificial intelligence (AI) -

based algorithms and data-on-demand for sustainability and environmental risk analysis 
for governments, nonprofits, businesses and markets. Founded in 2020 in Washington, 
DC, the goal of Impact Observatory is to train and provide information to users for global 
decision making to be planetary analysts. Available at: impactobservatory.com. 

 
2.2.2. ESRI 
ESRI Company is a world market leader in Geographic Information System 

(GIS) software, mapping and location intelligence, founded in 1969 in Redlands, 
California, USA, ESRI software is implemented in more than 350,000 organizations 
globally and in more than 200,000 institutions in the Americas, Asia and the Pacific, 
Europe, Africa, and the Middle East, including Fortune 500 companies, government 
agencies, non-profit organizations, and universities, has regional offices, 
international distributors and partners providing local support in more than 100 
countries on six continents. With its pioneering commitment to geospatial 
information technology, ESRI designs the most innovative solutions for digital 
transformation, the Internet of Things. 

 
     2.2.3. Google Earth Engine (GEE) 
It is a cloud-based platform for planetary-scale work that features geospatial 

analysis capabilities and provides the computational power of Google. It provides 
capacities to influence a variety of high-impact social issues including deforestation, 
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floods, drought, natural disasters, disease and food security, water management, 
climate monitoring and environmental protection [14]. 

 
     2.2.4. Sentinel Images 
It is a multi-satellite project developed by the European Space Agency (ESA) 

within the framework of the Copernicus Program [15]. It is made up of five satellites 
with different objectives that go from terrestrial surveillance to marine observation: 
1) Sentinel-1, its objective is the observation of the Earth and the oceans; 2) Sentinel-
2, its main objective is Land observation, and it consists of two satellites that provide 
high resolution images; 3) Sentinel-3, its main objective is marine observation; 4) 
Sentinel-4, dedicated to air quality monitoring; 5) Sentinel-5, like its predecessor, is 
dedicated to air quality monitoring. 

 
     2.2.5. Land Use and Land Cover 
Information based on Artificial Intelligence (AI), has a resolution of 10 m, based 

on Sentinel-2 satellite images, with 85% accuracy and 10 categories of land cover 
(land use). Leaders in governments, NGOs, finance, and industry need reliable, 
actionable information about the changing world to understand opportunities, 
identify threats, and measure the impacts of actions. (IO) Land Use & Land Cover 
(LULC) meets this need with up-to-date maps, uses artificial intelligence-based 
algorithms to create user-designated maps on demand, automatically, anywhere on 
Earth, from local to global scale [16]. 

 
     2.2.6. Related jobs 
The use of these resources is considered a very important tool in the field of 

research since it contributes to obtaining homogeneous and precise data for its 
application in various areas. Such is the case of [12] who carried out an automatic 
classification of land cover from satellite images using a machine learning method 
based on Neural Networks (CNN); obtained an accuracy of 83.52% in training and 
91.02% in validation. Similarly [6], presents the update of the land cover 
cartography, performed the calculation of the Normalized Difference Vegetation 
Index (NDVI) on a mosaic of Sentinel 2B-1C satellite images in the Google Earth 
Engine (GEE) platform; carried out an unsupervised classification by clusters 
obtaining an accuracy of 83%. [17] performed an analysis of satellite images of 
different spatial resolutions to interpret the behavior of lagoons in a region using the 
Standardized Precipitation Index (IEP). [18], cited by [16], in the evaluation of the 
precision of the 2020 world map by the Impact Observatory, the surface estimates 
were adjusted for each class, arriving A 95% confidence interval for each area 
estimate, giving users a clearer picture of the precision and total area of each class. 
 

2.3. Materials and Methodology 
     2.3.1. Materials 
For the present study, we have considered data from the technology company 

Impact Observatory, which developed its land classification model with artificial 
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intelligence using a training data set of five billion image pixels tagged by humans. 
This model received the Sentinel-2 scene collection for classification, processing 
more than 400,000 Earth observations to produce the final map, available at: 
https://www.arcgis.com/home/item.html?id=fc92d38533d440078f17678ebc20e8e2 

 
     2.3.2. Data used 
For data processing, they have direct access through the web services in ArcGIS 

Living Atlas, and ESRI, available on the platform of 
https://www.arcgis.com/apps/mapviewer/index.html?layers=d6642f8a4f6d4685a24ae2dc0c73d4ac  

 
Fig. 2. Land Use / Global Land Cover Map (LULC). 

 
     2.3.3. Data availability 
Global maps (LULC), provide information on land use, this dataset can be used 

to visualize land use / land cover anywhere on Earth. This application provides 
access to 700 individual 10-meter resolution GeoTIFF files of the 2020 Esri Land 
Cover map produced by Impact Observatory. The product generated in this work is 
available for download, it corresponds to zone 18L at: 
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078
f17678ebc20e8e2 , with IMAGE ID: projects / sat- io / open-datasets / landcover / 
ESRI_Global-LULC_10m / 18L_20200101-20210101  

 
     2.3.4. Description and characteristics 
The format that contains it is GeoTIFF, with a resolution of 10 individual meters 

of the Esri 2020 Land Cover map produced by Impact Observatory, the data belongs 
to zone 18L, with a period range that varies from 2020-01-01 to 2021- 01-01, is 
available for viewing on the Code: 
https://code.earthengine.google.com/514a294747ee5e7a136372b7e947d7bc  

 
     2.3.5. Mapping with Artificial Intelligence (AI) 
Impact Observatory's deep learning artificial intelligence land classification 

model, used a massive training data set of billions of image pixels tagged by humans, 
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developed by the National Geographic Society, the global map was developed at 
Starting Sentinel-2 image for 2020 on Microsoft Planetary Computer. 

 

 
Fig. 3. ESRI 2020 Map Land Cover Downloader. 

 
     2.3.6. Learning Model 
The deep learning model uses 6 bands of Sentinel-2 surface reflectance data: 

visible blue, green, red, near-infrared, and two short-wave infrared bands. To create 
the final map, the model is run on multiple dates throughout the year, and the results 
are compiled into a final representative map of 2020. For the process, data from the 
Sentinel-2 processing platform was accessed, at through Microsoft's planetary 
computer, produced by a deep learning model trained with more than 5 billion hand-
tagged Sentinel-2 pixels, sampled at more than 20,000 sites [16]. 

 
     2.3.7. Classification Process 
The methodology used for the classification process is based on expert scientists 

to manually digitize the land use entities from satellite images, due to the size, this 
process took a long time, later decision tree models were used to infer land use 
characteristics from ancillary data; However, this method did not provide an accurate 
representation, spectral information from satellite images was also applied to 
perform a supervised classification, but this procedure could not successfully 
distinguish entities. However, in recent years, machine learning, a sub-discipline of 
artificial intelligence (AI), has progressed to the point that the use of computer vision 
and deep learning in analysis and classification imaging is now viable (Fig. 4). 

 
     2.3.8. Analysis of Space Variation 
For the analysis of space variation, algorithms based (AI) were used, where the 

computer assigns a label to an image to categorize geotagged images, how water, 
trees, dense vegetation, bare soils, among others, have been classified, where the  
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Fig. 4. Land use classification process workflow. 

 
computer needs to find different types of segmentation within an image, as well as 
their location. Another important task in computer vision is semantic segmentation, 
in which each pixel in an image is classified as belonging to a particular class. In 
GIS, semantic segmentation can be used for land cover classification or to extract 
road networks from satellite images (Fig. 5). 
 

 
Fig. 5. Data Processing Land Cover ESRI 2020, GEE platform. 

 
3. RESULTS AND DISCUSSION 
3.1. Data validation 
The validation of the methodology is a fundamental stage that should not be 

evaded for any reason, because it confirms and gives confidence to the information 
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presented by the satellite images and the certainty of the methodology [19]. The map 
has been generated using Sentinel-2 images, working with more than 400,000 
observations to reclassify the territory into 10 classes. The tools used are highly 
reliable for the evaluation of land use, in order to make decisions for management 
and conservation (Fig. 6). 

 
 

Fig. 6. Visual results of "validation" experiments. 
 
3.2. Results 
The results of mapping of soil types, applying deep learning algorithms, are 

summarized in Table 1, we can see that the total area is 2 111 415.29 ha, the water 
represents an area of 9 392.84 ha which represents 0.44%, while the cultivated land 
occupies an area of 34 408.09 ha, representing 1.63%, it is noted that the bushes/shrubs 
that are a mixture of small clusters of plants scattered in a landscape, show soil or 
exposed rock, cover of scarce shrubs, they occupy the largest area of 1 740 486.69 ha, 
which represents 82.435% of the total area. To view the code training process: 
https://code.earthengine.google.com/1996db9717f38659e12b7ff2ebbd13a3 (Fig. 7). 

The use of natural resources must be supported by adequate territorial planning, 
in this sense, land cover is a key input for understanding the territorial-environmental 
processes and dynamics of a certain region [20]. 
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Table 1. Types of land use period 2020, Apurímac Region 
 

Type of Land Pixel Resol. (10*10) Area (ha) % 

Water 939284 100 9392.84 0.44 

Trees 8072151 100 80721.51 3.82 

Herb 11536132 100 115361.32 5.46 

Flooded Vegatation 174399 100 1743.99 0.08 

Crops 3440809 100 34408.09 1.63 

Scrub/Shrubs 174048669 100 1740486.69 82.43 

Build Area 2727120 100 27271.2 1.29 

Bare ground 10178540 100 101785.4 4.82 

Snow/Ice 22789 100 227.89 0.01 

Clouds 1636 100 16.36 0.00 

Total 211141529 100 2111415.29 100 
Source: Satellite Images Landsat. Processing on the Google Earth Engine platform. 

A remarkable growth in the number of analytical data sets (Fig. 8), with the desire 
and need to study large areas, has brought the concept of Big Data into the field of 
Earth observation in recent years. [21]; [22]. This accompanied by Google Earth 
Engine (GEE), which provides planetary scale calculation functions of raster and 
vector data, can effectively handle data in mapping LULC [23]. 

 

 
Fig. 7. Data processing results in (GEE) in high resolution coverage of land use in 

Apurimac Region. 
 

  As a result of this analysis of the type of land use, the majority of the occupied 
part of Apurímac Region is scrub/shrubs according to the land cover data. 
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Fig. 8. Land use map of Apurímac region 2020. 

 
5. CONCLUSIONS 
 
In this research, the type of use of coverage of 10 classes was determined, from 

land cover data (LULC), applying the machine learning algorithms of Artificial 
Intelligence (AI) in the GEE platform, of the Apurímac region to the 2020 period. 

According to the analysis, the total area is 2 111 415.29 ha, each class occupies a 
space, the water represents an area of 9 392.84 ha of 0.44%, on the other hand the 
snow/ice occupies 227.89 ha, representing 0.01% of the total, while the cultivated land 
occupies an area of 34 408.09 ha, which represents 1.63%, it is clearly noted that the 
bushes/shrubs that are a mixture of small clusters of plants or individual plants 
scattered in a landscape, showing exposed soil or rock, scarce shrub cover, occupying 
the largest area of 1 740 486.69 ha, which represents 82.435% of the total area. 

Furthermore, the findings also produce high precision efficiency when applying 
algorithms driven by artificial intelligence (AI). 
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