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ABSTRACT. Suspended Sediment Estimation Using Machine Learning Methods. 
Suspended sediment in rivers is important for efficiently using water resources and 
hydraulic structures.  In this study, the suspended sediment load of rivers was estimated 
using traditional multi-linear regression (MLR), machine learning methods such as the 
support vector machines (SVM) and M5 decision tree (M5T). Data on daily stream flow, 
daily maximum and minimum water temperature and suspended sediment concentration 
in the river were used as input data in all models to predict daily suspended sediment 
discharge. The performance of all methods is evaluated based on a statistical approach. 
Determination coefficient (R2), root mean square error (RMSE) and mean absolute error 
(MAE) are used as comparison criteria. Overall, the machine learning approaches better 
predict suspended sediment discharge. 
 
Keywords: Sediment Discharge, Prediction, Linear regression, Support Vector  
Machines, M5 tree. 
 
 

Introduction 

Accurate prediction of suspended sediment is of great importance in 
understanding the morphology of the river and utility water supply problems. 
Suspended sediment load in streams can be determined by different methods such as 
direct measurements at sediment observation stations, sediment rating curves, 
regression, artificial intelligence methods, and empirical approaches based on 
experimental studies. Although direct measurements from sediment observation 
stations are the most reliable way of determining the sediment material, it is a time-
consuming, costly, and error-prone method due to the sampling procedure (Olive & 
Rieger, 1988; Öztürk & Apaydın,2001). Another method is artificial intelligence 
techniques or flexible calculation methods. Flexible calculation methods attempt to 
model suspended sediments using techniques such as Artificial Neural Networks 
(ANN), Fuzzy Logic Systems (FL), Adaptive Neural Fuzzy Systems (ANFIS), or 
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Genetic Algorithm (GA) using various inputs. Empirical approaches are another 
method used in the literature based on experimental studies used in predicting 
suspended sediment (Lane and Kalinske 1941, Einstein 1950, Brooks 1963). When 
the literature is examined, some studies draw attention, especially under these 
groupings. 

In recent years, artificial intelligence approaches have been widely used in water 
resource management and hydrological projects (Melesse et al. (2011); Üneş and 
Demirci, (2015); Üneş et al. (2020); Baek et al. (2020); Han and Morrison (2022)). 
Memarian et al. (2013) observed the sediment load by combining artificial neural 
networks with genetic algorithms. Demirci and Baltaci (2013) predicted suspended 
sediment in a river using fuzzy logic. Liu et al. (2013) estimate daily suspended 
sediment concentration in the Yellow River Basin within the borders of China with 
daily data covering 2193 between 1967 and 1972 using the wavelet transform-ANN 
method. Demirci et al. (2015) studied suspended sediment estimation using an 
artificial intelligence approach.   Zounemat-Kermani et al. (2016) investigated the 
usability of artificial neural networks and support vector regression (SVR) models 
using an 8-year data series of three separate hydrometric stations for the suspended 
sediment concentration prediction. Taşar et al. (2017) forecasted suspended 
sediment in rivers using an artificial neural networks approach.  Sari et al. (2018) 
estimated suspended sediment concentration from monitored data of turbidity and 
water level using artificial neural networks. Yadav and Satyannarayana (2020) 
estimated suspended sediment yield using multi-objective genetic algorithm 
optimization of an artificial neural network in the Mahanadi River basin, India.   
This study aims to improve reliable and accurate mean-daily flow sediment load 
discharge models using various machine learning techniques. Suspended sediment 
discharge was predicted using hydro-meteorological parameters such as daily river 
flow, suspended sediment concentration, and water temperature (maximum and 
minimum) measured between 1969 and 1974 at the Ohio State Cuyahoga County 
Station on the Cuyahoga River. For the estimation of the amount of sediment; 
Multiple Linear Regression (MLR), support vector machines (SVM) and M5 
Decision Tree (M5T) models were used. 
 
Study Area 
Data from Cuyahoga County Station on Cuyahoga River in Ohio (USGS Station No. 
04208000, latitude 41°23'43", longitude 81°37'48"), operated by the US Geological 
Survey (USGS), were used in the study. The Cuyahoga River is located in the 
northeast of Ohio, USA, and feeds Lake Erie. Daily sediment discharge changes 
between the years 1969 and 1974 are shown in Fig. 2. While creating the models, 
80% of the data set was used as training and 20% as a test. Total of 1659 daily data; 
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the Training process was done with the first 1324 days of data and the remaining 335 
data were applied as testing. Test data were taken into account in model 
performances. 

 

Figure 1. The location of the Cuyahoga County Station in Ohio (USGS) 

 

Figure 2. Sediment discharge fluctuations of Cuyahoga County Station 
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Methods 
Multi-Linear Regression (MLR): 

It is accepted that there is a relationship between the variables in problems 
expressed with two or more variables. The general equation of the multi-linear 
regression method used to determine the effect of the independent variables on the 
dependent variables was given in Equation 2(Güzel et al.,2023) 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝛽𝛽4𝑥𝑥4                                                                          (1)     
 
Support vector machines (SVM) 

Support vector machines (SVM), which include regression and classification 
forms, have been introduced by Vapnik as a robust and important learning tool 
(Vapnik, 1995). Since then, there has been an increasing amount of research into the 
application of SVMs over time. In recent years, SVMs have been used as a new 
learning approach in water resources. In the SVM model, sediment discharge (SD) 
was predicted using the data of daily river flow (Q), suspended sediment 
concentration (Sc), and maximum water temperature (Tmax), minimum water 
temperature (Tmin), using the polynomial kernel function. 
 
M5 Decision Tree Method (M5T) 

The M5 decision tree algorithm was originally developed by Quinlan (1992). A 
detailed description of this technique can be found in Witten and Frank (2005). A 
brief description of this technique is as follows. The M5 algorithm generates a 
regression sequence by iteratively dividing the sample space using tests on a single 
attribute that maximizes the variance in the target space. The mathematical formula 
for calculating standard deviation reduction (SDR): 
𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠(𝑇𝑇) − ∑ 𝐼𝐼 𝑇𝑇𝑇𝑇

𝑇𝑇
𝐼𝐼 𝑠𝑠𝑠𝑠𝐼𝐼𝑇𝑇𝑠𝑠𝐼𝐼            (1) 

where T represents a set of samples reaching the node, Ti represents the subset of 
samples resulting from the potential set, and sd is the standard deviation.  
 
Results 

The results of multiple linear regression (MLR), Support vector machines (SVM), 
and M5 Decision Tree (M5T), models for test data are given as follows. For each 
model, root mean squared error (RMSE), mean absolute error (MAE) and 
determination coefficients (R2) between model estimates and observed values are 
calculated. The results are also used to compare the performance of model estimation 
and observation data. RMSE and MAE are determined as follows. 

𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 = �1
𝑁𝑁
∗ �∑ 𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑁𝑁

𝑇𝑇=1 �2                                 (2) 

𝑅𝑅𝑀𝑀𝑅𝑅 = 1
𝑁𝑁
∗ ∑ �𝑌𝑌𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑠𝑠𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝�𝑁𝑁

𝑇𝑇=1                                           (3) 
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Where N is the data set numbers and Yi shows the sediment discharge data. The 
performance of model results is shown in Table 1.  
 

Table 1. Statistical Results for Prediction Models 

Models MAE 
(ton.day-1) 

RMSE 
(ton.day-1) R2 

MLR 468.79 898.05 0.841 

SVM 206.89 546.76 0.944 

M5 TREE 115.81 346.74 0.976 

 

For all models, sediment discharge (SD) was predicted using the data of daily river 
flow (Q), suspended sediment concentration (Sc), and maximum water temperature 
(Tmax), minimum water temperature (Tmin). When Table 1 was examined, all models 
gave different results. According to the RMSE, MAE, and R2 criteria, the best results 
were obtained in M5 Tree, and SVM models. MLR model gave the worst results in 
all criteria. 

MLR Result 
For MLR analysis, linear model includes constant and linear terms. Eqs. (4) were 

developed for SD prediction by linear model. 
𝑦𝑦 = 𝑆𝑆𝐷𝐷 = −930.34 + 50.67𝑇𝑇𝑚𝑚𝑇𝑇𝑝𝑝 − 41.86𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 + 22.67𝑄𝑄 + 7.02𝑆𝑆𝑝𝑝    (4) 

In Figure 3a and  Figure 3b, the distribution and scatter graphs of MLR are shown 
respectively. The determination coefficient was obtained as R2 = 0.841 in the scatter 
graph. As seen in Figure 3a, it is observed that the observed daily real-time 
suspended discharge values in the test phase MLR give estimates far from the real 
values. It has been observed in the scatter and distribution plots that the MLR values 
are lower than the real values. When table 1 was examined, MLR models showed 
the worst performance. according to MAE, RMSE, and R2 (468.79, 898.05, 0.841)  
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Figure 3. Measurement and MLR for testing data: a) distribution b) scatter 
graph 
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SVM Results 
For the SVM model, distribution and scatter graphs are shown in Figure 4a and 

Figure 4b separately. As can be seen in Figure 1, the determination coefficient R2 = 
0.944 was obtained. Although SVM daily real-time sediment discharge values in the 
test phase give better results than MLR values, it is observed that they give distant 
predictive values to the real values.  

 

Figure 4. Measurement and SVM for testing data a) distribution b) scatter graph 
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M5 Tree Results: 

Figure 5a. and Figure 5b shows the distribution and scatter diagrams of the estimated 
test results, respectively.  In Figure 5a, M5T prediction values are seen near the 
actual values. The determination coefficient was obtained as R2 = 0.976 as seen in 
Figure 14b.  Results of M5T prediction values of daily real-time suspended sediment 
discharge are better than MLR prediction values and the good estimated results are 
observed according to the actual values.  

 

Figure 5. Measurement and M5 Tree for testing data:  a) distribution b) scatter 
graph 
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Conclusion 
In this study, the capabilities of regression analysis (MLR), support vector machines 
(SVM) and M5 Decision Tree (M5T) have been investigated in estimating sediment 
discharge. Daily river flow, suspended sediment concentration, sediment discharge, 
and water temperatures of the Cuyahoga River in the USA were used. While creating 
the models, 80% of the data set was used as training and 20% as a test. 
When the results are evaluated, the M5 Decision Tree model approach has the best 
results according to the statistical criteria M5T and SVM models have also 
successful in sediment discharge prediction. MLR model failed compared to other 
models with the highest MAE, RMSE, and the smallest R2.  The worst results were 
obtained in the MLR method. MAE, RMSE, and R2 criteria. In this article, it is 
demonstrated that M5T and SVM can be a suitable alternative for river sediment 
estimation in future research.  
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